PTHrP Expression in Human MDA-MB-231 Breast Cancer Cells Is Critical for Tumor Growth and Survival and Osteoblast Inhibition
نویسندگان
چکیده
This study examined the effects of parathyroid hormone-related protein (PTHrP) derived from human MDA-MB-231 breast cancer cells on the tumor growth and osteoblast inhibition. Results revealed that knocking down PTHrP expression in the breast cancer cells strikingly inhibited the formation of subcutaneous tumors in nude mice. PTHrP knockdown dramatically decreased the levels of cyclins D1 and A1 proteins and arrested the cell cycle progression at the G1 stage. PTHrP knockdown led to the cleavage of Caspase 8 and induced apoptosis of the tumor cells. Interestingly, knocking down PTHrP increased the levels of Beclin1 and LC3-II and promoted the formation of autophagosomes. Knocking down PTHrP expression significantly reduced the abilities of the breast cancer cells to inhibit osteoblast differentiation and bone formation in vitro and in vivo. Finally, we found that PTHrP activated its own expression through an autocrine mechanism in MDA-MB-231 cells. Collectively, these studies suggest that targeting PTHrP expression in the tumor cells could be a potential therapeutic strategy for breast cancers, especially those with skeletal metastases.
منابع مشابه
A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer
Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...
متن کاملMetastatic Human Breast Cancer Cells Hormone-Related Peptide Expression and Osteolysis in The Hedgehog Signaling Molecule Gli2 Induces Parathyroid
Parathyroid hormone-related peptide (PTHrP) is a major factor involved in tumor-induced osteolysis caused by breast cancers that have metastasized to bone. However, the molecular mechanisms that mediate PTHrP production by breast cancer cells are not entirely clear. We hypothesized that Gli2, a downstream transcriptional effector of the Hedgehog (Hh) signaling pathway, regulates PTHrP expressio...
متن کاملThe hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cells.
Parathyroid hormone-related peptide (PTHrP) is a major factor involved in tumor-induced osteolysis caused by breast cancers that have metastasized to bone. However, the molecular mechanisms that mediate PTHrP production by breast cancer cells are not entirely clear. We hypothesized that Gli2, a downstream transcriptional effector of the Hedgehog (Hh) signaling pathway, regulates PTHrP expressio...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کامل